Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons.
نویسندگان
چکیده
In the medicinal leech, a rhythmically active 14-interneuron network composes the central pattern generator for heartbeat. In two segmental ganglia, bilateral pairs of reciprocally inhibitory heart interneurons (oscillator interneurons) produce a rhythm of alternating bursts of action potentials that paces activity in the pattern-generating network. The neuropeptide myomodulin decreases the period of this bursting and increases the intraburst spike frequency when applied to isolated ganglia containing these oscillator interneurons. Myomodulin also decreases period, increases spike frequency, and increases the robustness of endogenous bursting in synaptically isolated (with bicuculline) oscillator interneurons. In voltage-clamp experiments using hyperpolarizing ramps, we identify an increase in membrane conductance elicited by myomodulin with the properties of a hyperpolarization-activated current. Voltage steps confirm that myomodulin indeed increases the maximum conductance of the hyperpolarization-activated current I(h). In similar experiments using Cs(+) to block I(h), we demonstrate that myomodulin also causes a steady offset in the ramp current that is not associated with an increase in conductance. This current offset is blocked by ouabain, indicating that myomodulin inhibits the Na/K pump. In current-clamp experiments, when I(h) is blocked with Cs(+), myomodulin decreases period and increases spike frequency of alternating bursting in synaptically connected oscillator interneurons, suggesting that inhibiting the Na/K pump modulates these burst characteristics. These observations indicate that myomodulin decreases period and increases spike frequency of endogenous bursting in synaptically isolated oscillator heart interneurons and alternating bursting of reciprocally inhibitory pairs of interneurons, at least in part, by increasing I(h) and by decreasing the Na/K pump.
منابع مشابه
TITLE : Myomodulin increases Ih and inhibits the Na / K pump to modulate bursting in leech heart interneurons
In the medicinal leech, a rhythmically active 14-interneuron network composes the central pattern generator for heartbeat. In two segmental ganglia, bilateral pairs of reciprocally inhibitory heart interneurons (oscillator interneurons) produce a rhythm of alternating bursts of action potentials that paces activity in the pattern generating network. The neuropeptide myomodulin decreases the per...
متن کاملA Hyperpolarization-Activated of the Medicinal Leech
Heart interneurons (HN cells) in isolated ganglia of the medicinal leech were voltage-clamped with single microelectrodes. Hyperpolarizing voltage steps elicited a slow inward current (I,,), which underlies the characteristic depolarizing response of HN cells to injection of prolonged hyperpolarizing current pulses (Arbas and Calabrese, 1987a). The conductance underlying /,, begins to activate ...
متن کاملNa+/K+ pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches
The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na(+)/K(+) pump current to such bursting activity has not been well studied. We used monensin, a Na(+)/H(+) antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneuro...
متن کاملOscillatory behaviors in pharmacologically isolated heart interneurons from the medicinal leech
The central motor pattern for heartbeat in the medicinal leech is based upon the alternating bursting activity of mutually inhibitory pairs of heart interneurons (HNs). When pharmacologically isolated, these neurons spike tonically. Using a canonical model of an HN cell (Nadim et al., J. Comput. Neurosci. 2 (1995) 215}235) as a starting point, we generated three models, possessing di!erent subs...
متن کاملBursting in leech heart interneurons: cell-autonomous and network-based mechanisms.
Rhythmic activity within the heartbeat pattern generator of the medicinal leech is based on the alternating bursting of mutually inhibitory pairs of oscillator heart interneurons (half-center oscillators). Bicuculline methiodide has been shown to block mutual inhibition between these interneurons and to cause them to spike tonically while recorded intracellularly (Schmidt and Calabrese, 1992). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 6 شماره
صفحات -
تاریخ انتشار 2005